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Alzheimer’s disease (AD) is the most common neurodegenerative disorder worldwide

and is one of the leading sources of morbidity and mortality in the aging population.

There is a long preclinical period followed by mild cognitive impairment (MCI). Clinical

diagnosis and the rate of decline is variable. Progression monitoring remains a challenge

in AD, and it is imperative to create better tools to quantify this progression. Brain

magnetic resonance imaging (MRI) is commonly used for patient assessment. However,

current approaches for analysis require strong a priori assumptions about regions of

interest used and complex preprocessing pipelines including computationally expensive

non-linear registrations and iterative surface deformations. These preprocessing steps

are composed of many stacked processing layers. Any error or bias in an upstream

layer will be propagated throughout the pipeline. Failures or biases in the non-linear

subject registration and the subjective choice of atlases of specific regions are common

in medical neuroimaging analysis and may hinder the translation of many approaches to

the clinical practice. Here we propose a data-driven method based on an extension of

a deep learning architecture, DeepSymNet, that identifies longitudinal changes without

relying on prior brain regions of interest, an atlas, or non-linear registration steps. Our

approach is trained end-to-end and learns how a patient’s brain structure dynamically

changes between two-time points directly from the raw voxels. We compare our

approach with Freesurfer longitudinal pipelines and voxel-based methods using the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our model can identify AD

progression with comparable results to existing Freesurfer longitudinal pipelines without

the need of predefined regions of interest, non-rigid registration algorithms, or iterative

surface deformation at a fraction of the processing time. When compared to other

voxel-based methods which share some of the same benefits, our model showed a

statistically significant performance improvement. Additionally, we show that our model

can differentiate between healthy subjects and patients with MCI. The model’s decision

was investigated using the epsilon layer-wise propagation algorithm. We found that the
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predictions were driven by the pallidum, putamen, and the superior temporal gyrus.

Our novel longitudinal based, deep learning approach has the potential to diagnose

patients earlier and enable new computational tools to monitor neurodegeneration in

clinical practice.

Keywords: Alzheimer’s disease, deep learning, magnetic resonance imaging, progression, biomarkers,

longitudinal, ADNI

INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia globally
(50–75%) and is distinguished by a progressive cognitive decline
(Lane et al., 2018). Currently, 5.8 million Americans suffer AD,
and by 2050, this number will rise to 14 million (Alzheimer’s
Association, 2016). Criteria for the diagnosis of probable AD
is based on subjective clinical assessments (Pfeffer et al., 1982;
Marshall et al., 2015). There are multiple treatments available
that can ameliorate some of the symptoms, but none of these
drugs alter the course of the disease, and inevitably the dementia
progresses in all patients. Neuroprotective and other disease-
modifying therapies are under active development, however, to
demonstrate their efficacy, sensitive, and reproducible metrics to
measure disease progression are urgently needed, particularly at
the earliest stage of the disease when therapies are more likely to
slow the neurodegenerative progression (Aisen et al., 2017).

MRI based biomarkers for AD have been widely studied.
Multiple groups have used imaging data to understand how
regional brain atrophy, connectivity, or physical proximity can
serve as biomarkers for dementia (Lillemark et al., 2014) or
how these can be used to develop deep learning networks for
AD classification (Litjens et al., 2017). These techniques are
being developed to improve the accuracy of and to provide
a quantitative, data-driven approach for AD disease diagnosis
(Weiner et al., 2017).

In the past decade, researchers explored many avenues of
the AD classification problem using machine learning. Over the
years, there have been extensive reviews summarizing the state
of the art of these methods (Rathore et al., 2017; Pellegrini et al.,
2018). Recently, some approaches include one imaging modality
(typically MRI) (Long et al., 2017), multiple imaging modalities
data (Zhang et al., 2011, 2012), brain connectivity (de Vos et al.,
2018), and genetic data (Peng et al., 2016). The most commonly
used machine learning models are support vector machines,
though there is definitely diversity in techniques (Pellegrini et al.,
2018). Many of these papers focus on AD vs. CN classification,
but studies are also looking at other classification tasks such as
CN vs.MCI (Samper-González et al., 2018). All thesemethods are
used for diagnosing a patient based on a model that was trained
on cross-sectional data.

There is a growing interest in using machine learning to
understand disease progression, and this is made possible by
the available datasets for neurodegenerative disorders (Marcus
et al., 2010). Researchers have used this longitudinal data to
create brain development trajectories used to predict the risk
of developing AD (Lawrence et al., 2017), to develop clinical

symptom trajectories (Bhagwat et al., 2018) to extract essential
brain features in MCI classification (Huang et al., 2017; Sun et al.,
2017), and to investigate different stages of AD progression from
a multi-modal imaging standpoint (Gray et al., 2012; Rodrigues
et al., 2014; Nozadi et al., 2018). Similar work in Parkinson’s
disease used longitudinal connectome data as a marker for
neurodegenerative progression (Peña-Nogales et al., 2018). In
areas such as genetics, longitudinal studies have proved beneficial
by revealing more single nucleotide polymorphism phenotype
associations than cross-sectional studies in AD research (Xu
et al., 2014). Despite the progress, existing methods use a
priori hypotheses and feature engineering in their neuroimaging
processing pipeline. A typical example would be the computation
of the volumetric changes on a predefined number of brain areas
which are used as an input to a machine learning or statistical
model. This approach has twomain limitations: (1), it is bound to
the a-priori selection of specific brain areas, making it impractical
to model disease progressions that are not fully understood; (2),
any error in the estimation of the brain areas metrics would
negatively influence the machine learning or statistical model
(i.e., garbage in, garbage out).

To overcome the limitation of engineered features, recent
studies have used the concept of feature extraction through deep
learning techniques. This allows researchers to automatically
extract image representations from the raw voxels specific
to the outcome needed. Studies have used deep learning to
tune convolutional neural networks (CNNs) on MRI images
(Backstrom et al., 2018) and to process multi-modal information
including genetic and neuropsychological data (Spasov et al.,
2019). Further, others have used deep learning to complete
other related tasks like segmentation and brain parcellation (Li
et al., 2017; Gibson et al., 2018). ADNI-based machine and deep
learning reviews are being written as a result (Weiner et al.,
2017). However, we are not aware of end-to-end feature learning
approaches tomeasure longitudinal changes that does not require
pre-defined brain areas or region of interests for training.

In this work, we propose to use a DeepSymNet-based
model, a novel end-to-end deep learning architecture, to identify
longitudinal neurodegenerative progression between structural
MRI images with minimal preprocessing at two-time points.
We adapt the DeepSymNet architecture presented by Barman
et al. (2019) to identify structural brain differences by learning
time-sensitive representation on a subject-level. The imaging
preprocessing pipeline required by the architecture does not use a
priori brain regions or non-rigid registration algorithms making
the process more robust by having fewer steps throughout
the pipeline and more efficient in terms of time required to
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generate hypotheses and computational time than common
longitudinal processing pipelines such as Freesurfer. This work
has four main contributions: (1) a new neuroimaging pipeline
to measure neurodegenerative progression that does not require
pre-defined brain areas or region of interests for training, (2)
comparable classification performance when compared with
existing Freesurfer and voxel-based longitudinal pipelines for
AD-relevant progression, (3) higher computational efficiency
and generalizability to external dataset of mild cognitive
impairment (MCI) subjects, and (4) analysis of the brain areas
that drive the model’s decision. This manuscript’s code can be
found at https://gitlab.com/lgianca/longitudinal-deepsymnet.

MATERIALS AND METHODS

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) in November 2018. The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W.Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). The
ADNI data were downloaded in November 2018 (https://ida.loni.
usc.edu/login.jsp). The data were then processed according to
the Brain Imaging Data Structure (BIDS) format (Gorgolewski
et al., 2016). This structure allows researchers to organize their
neuroimaging-related data in a concise way that allows groups
to access a growing number of computational tools and pipelines
compatible with the BIDS format.

In this study, we included AD, MCI, and CN subjects from
ADNI who had at least two T1-weighted brain images at least
6 months apart from ADNI1, ADNIGO, and ADNI2, and this
resulted in 971 patients. When patients who had more than two
imaging time points, we chose the first and last sessions. The two
sessions are referred to as “session 1” and “session 2” throughout
the paper. Further, all the patients chosen stayed within their
disease phenotype at and between the two imaging sessions and
successfully passed the image preprocessing pipeline. As shown
in Table 1, after the above criteria were applied, we had a total
of 632 subjects between the three groups. A Kruskal-Wallis
test was performed on the cohort demographics. The statistical
test succeeded to reject the null hypothesis that the samples
originate from the same distribution for the sex and time between
sessions variables. In our comparative analysis described later, we
corrected for these potential confounders.

We will divide the methods and techniques we used into
four main topics: (1) overviews of the Freesurfer-based, voxel-
based, and DeepSymNet pipelines, (2) experimental design, (3)
computational time analysis, (4) progression generalizability
tests, and (5) confounding variable adjustment.

In the three sections, we provide an overview of the Freesurfer
longitudinal pipeline, a description of the feature sets used for
machine learning, and their accompanying experiments. Second,
we describe the DeepSymNet-based pipeline, the experiments
conducted, and the relevant brain area analysis. Third, we discuss

the voxel-based machine learning method. Next, we describe
comparison experiments for the above pipelines where we
evaluated the computational time requirements. We then apply
the models on an external MCI cohort to test the generalizability
of the different pipelines and to identify progression patterns on
this cohort at risk of developing AD. Finally, we describe how we
evaluate the effect of potential confounders in the models.

Data Preprocessing and Feature Set
Creation Using Freesurfer Pipelines
As seen in Figure 1 below, Freesurfer extracts the brain region
volumes using multiple predefined (and time intensive) steps
such as within-subject template creation, atlas registration, non-
linear transformations, surface inflating. Here, we aimed to
compare the model performance using two different Freesurfer
version’s atlas-based, longitudinal pipelines. The pipeline features
will be referred to as the first feature set (FS 1) and the
second feature set (FS 2), respectively. For FS 1, the “University
of California San Francisco’s Longitudinal Freesurfer (5.1) All
Available Base Image [ADNIGO, 2]” file downloaded from
the ADNI website. This independent and external source was
critical to ensure that our results were comparable with already
published research. The FS 2 set was taken from the output
of the Freesurfer (6.0) longitudinal pipeline. A full description
of the Freesurfer longitudinal pipeline is beyond the scope of
this paper, and we would like to refer readers to the original
publications for more information (Reuter et al., 2010, 2012;
Iglesias et al., 2016). These steps are typically what researchers
use in neuroimaging pipelines.

The patients between the two datasets (FS 1 and FS 2) were
matched using the patient’s RID (specific to ADNI’s protocol) and
by the closest visit date. A total of 93 subjects matched between
the two datasets. For each patient, the structural MRI variables
output from the pipelines were used as a feature vector. The FS
2 regional volume data came from the subcortical segmentation

TABLE 1 | Demographics and time between imaging sessions of the AD, CN, and

MCI patients used in this study (one standard deviation–s.d.).

AD CN MCI p-value

Number of patients 212 270 150

First session age, years

[mean (s.d.)]

74.8 (7.7) 74.7 (5.9) 75.3 (7.3) 0.381

Time between

sessions, years [mean

(s.d.)]

1.6 (0.6) 4.4 (2.6) 3.4 (2.8) <0.001

Sex [male, n (%)] 108 (50.9%) 138 (51.1%) 99 (66%) <0.01

Race/Ethnicity [n (%)] - 0 (0%) 0 (0%) 0 (0%) 0.403

American

Indian/Alaskan Native,

4 (1.9%) 6 (2.2%) 3 (2.0%)

Asian 0 (0%) 0 (0%) 0 (0%)

Native Hawaiian/Other

Pacific Islander

12 (5.6%) 20 (7.4%) 8 (5.3%)

Black/African American 193 (91.1%) 242 (89.6%) 139 (92.7%)

White, More than one

race

3 (1.4%) 2 (0.8%) 0 (0%)

Unknown
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FIGURE 1 | Overview of (A) atlas-based and non-linear registration imaging preprocessing pipeline, (B) voxel-based methods, and (C) DeepSymNet-based pipeline

implementation. Note that all processes involve rigid registration to align the patient’s brains longitudinally.

file (aseg.stats) and white matter parcellation files (wmparc.stats)
uniquely using the region sizes. The FS 1 pipeline took data from
both the header and body of the segmentation files in addition to
additional statistics data from the parcellation files (e.g., thickness
average and standard deviation, and surface area) which resulted
in a larger feature set. For both pipelines, the same cortical and
subcortical regions were investigated. Finally, the FS 2 pipeline
was compared to theDeepSymNet pipeline using both the limited
cohort of 93 patients and the full cohort.

DeepSymNet-Based Pipeline Overview
Data Preprocessing
For the DeepSymNet preprocessing implementation, a simple
longitudinal pipeline that used skull stripping, normalization,
and a patient-specific alignment (Figure 1). This pipeline
has several advantages for longitudinal studies. First, it uses
rigid registration, which decreases computational and time
costs associated with imaging pipelines. Second, there is no
dependence on predefined brain regions, which enables us to take
a more data-driven approach to understand progression. Third,
the pipeline finds the best space to register the individual patient
to which reduces the overall noise and bias that occurs when
comparing samples between each other. The output of the MRI
images was 182× 218× 182 with a resolution of 1× 1× 1 mm3.
Empty voxels outside of the brain were deleted from the image
and not used in the subsequent analyses.

DeepSymNet Architecture Overview
The Deep Symmetry-Sensitive Convolutional Neural Network
(DeepSymNet) architecture (Figure 2) used in this study was
inspired from a model designed to identify spatial symmetries
in brain angiograms (Barman et al., 2019). We applied this
architecture to identify changes through time as opposed to
spatial symmetries. This enables the architecture to directly learn

a representation sensitive to intra-patients changes, rather than
model the complex inter-patient heterogeneity and measure it
over time. The model receives as input two brains at different
time points, an initial step that learns a common representation
between the two time points by 3-dimensional (3-D) Inception
modules with weight sharing, which is then followed by a
merge layer where the output of the filters is subtracted from
one another, then, another set of 3-D Inception modules learn
a representation sensitive to change. Finally, a max pooling
and fully connected layer estimate the likelihood of a disease-
relevant progression.

As AD is characterized by structural brain degeneration, a
model like the one described has the potential of identifying the
structural differences or progression patterns between the two
MRI acquisition regardless of the brain appearance at during the
first imaging session.

DeepSymNet Architecture Detailed
Here, we summarize the different components of DeepSymNet
and walk the readers through our specific design.

Shared weights
Each of the two images is fed into identical neural networks
before they are merged together. Additionally, these identical
neural networks share weights, allowing them to learn the same
patterns in the two images. This architecture allows the network
to learn complex differences between the two imaging timepoints
and encode information specific to that visit. Further, this part of
the network can learn asymmetric patterns as neurodegeneration
may differ between right and left hemispheres.

Inception module
The Inception modules are composed of multiresolution 3-D
convolutional filters that learn to represent the T1 images at
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FIGURE 2 | Deep Symmetry-Sensitive Convolutional Neural Network (DeepSymNet) architecture overview. Longitudinal images go through a Siamese network

composed of 3-D Inception modules that share weights. These outputs are passed through a L-1 merge layer that computes differences between these two

sessions. Then, this is passed through a final 3-D Inception layer to learn from these differences. Lastly, these outputs are flattened and put through a dense layer for

the final AD-progression prediction.

different time points according to a loss function. It should be
noted that these Inception modules are the 3-D extension to
what is presented by Szegedy et al. (2015), and the modules are
not the same full Inception network architecture. The Inception
module concatenates several parallel convolutional layers. It can
be thought of as a mini network within a larger network. Since
MRI images are 3-D images, 3-D convolutional filters are used
within the Inception modules. For this application, the Inception
module consisted of 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 ×

5 convolutions, followed by concatenation and a max pooling
layer. These different convolution sizes enable the network to
learn features at different scales, which could allow for more
complex pattern recognition. Sixty-four filters have been used in
the Inception modules and the network uses rectified linear unit
(ReLU) activations.

Merge layer
An L-1 difference was then used to combine the learned
convolutional features from both sessions. This encodes critical
information about the structural brain changes between the
timepoints, and this information is passed through another
Inception layer.

Fully connected layers
After the merge and Inception layers, the difference between
the two images is transformed into a feature vector. This
vector is then passed through a fully connected layer, which
creates a linear combination of the filter outputs from
the penultimate layer of the network. A SoftMax operation
is used as the activation function in the last layer for
AD-progression prediction.

The DeepSymNet network was not designed to be fully
translational invariant like the classical Inception Network

(Szegedy et al., 2015). Rather, the algorithm is designed to
be insensitive to the inevitable small registration inaccuracies
between the two timepoints that may be present due to the rigid
registration step. This is achieved through the aforementioned
max pooling layers. Overall, this network is relatively shallow
compared to some of the deep networks commonly reported
in literature. The multiresolution filters within the inception
modules in addition to the L-1 merge layer allow for complex
image representation through space and time.

Implementation
The experiments were completed with Python (3.6.8). The
DeepSymNet was implemented with Keras (2.2.4) with
TensorFlow (1.12.0) as the backend. From a hardware
perspective, we used Nvidia’s Tesla V100 graphics cards
with 32 GB RAM. The training times for each epoch varied
depending on the number of model parameters, and these
training lengths could range from 9 to 400 s. Each fold had 150
epochs, and a batch size of four was used. Early stopping based
on a lack of improvement in validation loss for 30 epochs was
also employed to reduce unnecessary computational cost. Binary
cross-entropy was used as the loss function, and the Adam
optimizer was used (Kingma and Ba, 2015).

Brain Region Relevance Analysis
In order to understand which voxels contributed to the model’s
predictions, the epsilon layer-wise relevance propagation (ǫ-
LRP) method was used to analyze the contributions individual
voxels on the final prediction (Bach et al., 2015). In summary,
the ǫ-LRP method decomposes the output of deep learning
architectures, on a sample level, into relevance scores in a
backward fashion layer-by-layer. These scores can be projected
on the pixel or voxel level of the input, which in our case is the
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full brain MRI, and we used a heatmap to visualize the relative
magnitude of the scores. The ǫ-LRP implementation of the open-
source package DeepExplain (https://github.com/marcoancona/
DeepExplain) was used (Ancona and Gross, 2017).

To create this visualization that demonstrated which parts of
the brain were important for DeepSymNet’s predictions on AD
and CN subjects, we started with the chosen model after the
hyperparameter tuning test discussed in the next section. We
computed the subject-level relevance with the ǫ-LRP method for
both imaging sessions, and we ensured that the voxel magnitudes
used were from the test set subjects. For each n-th patient, we
added the absolute value of all the patients’ voxel magnitude, m,
for both sessions together into a single brain volume,MN .

MN =

N
∑

i = n

|mn|

Where m is the voxel in the brain volume after registering to a
common space and N represents the total number of patients.

Next, we wanted to determine the relative importance of each
brain region using the magnitude of a voxel’s relevance. We used
the Harvard-Oxford cortical and subcortical maps to segment the
brain into interpretable regions (Caviness et al., 1996). We used
these respective maps to segment the voxels into different brain
regions, R. We took the sum of all the voxel’s magnitudes mr

v,
within each region, r, and then normalized this summation by
the volume, Vr , of the respective regions. This would result in the
normalized volume magnitude,Mr .

Mr =

∑Vr
v =1m

r
v

Vr

∀r = 1, 2, . . .R

∀v= 1, 2, . . .V

This allowed us to see and interpret the relative progression-
related importance of these different regions for the
model’s decision.

Voxel-Based Machine Learning
In addition to the models discussed above, we experimented
with a set of general-purpose machine learning models receiving
the same input as the DeepSymNet architecture (Figure 1B). To
construct the feature vector for these models, the L-1 difference
between the two images was calculated, and the resulting 3-
D array was flattened into one dimension and given as input
to the model. Linear support vector machine and random
forest classifiers were chosen as preliminary models. However,
in order to avoid any model bias, we also included a strategy
that incorporated robust ensemble model construction through
meta-learning and Bayesian optimization (Feurer et al., 2015).
This strategy was completed using the AutoML library (https://
automl.github.io/auto-sklearn/master/). The architecture here
is essentially optimized over the parameter space to find the
“optimal” solution in order to mitigate human negligence, which
offers a good baseline for our comparison.

Experimental Design for Machine Learning
Models
For the FS 1 and FS 2 sets, longitudinal based classification tasks
were performed to assess the reliability between the two different
pipelines. These tests used an L1-regularized logistic regression as
the classifier, and the features (e.g., regional brain volumes) were
scaled with respect to their inter-quartile range

xr− Q1 (xr)

Q3 (xr)− Q1 (xr)
, ∀xr , rFS = 1, 2. . .RFS

where the values, xr , of brain region, rFS, are transformed using
the quartiles Q.

A 10-fold cross-validation was used where the split between
training and test sets were 90% and 10%, respectively. For the
longitudinal classification, each patient had two feature vectors
(first and last sessions), and the L-1 difference between these
vectors was used as the final feature vector. The cross-validation
process with random splits was conducted 100 times, and the
average classification probability was taken as the average of all of
these test set trials. This previously validated method offers more
reliable performance on relatively small datasets as it increases
the number of cross-validations without decreasing the size of
the test set (Pedregosa et al., 2011; Varoquaux et al., 2017).
Sensitivity and specificity metrics were calculated by choosing a
cutoff point that was the minimum distance from the upper left
corner in the Area Under the Receiver Operating Curve (AUC
ROC). Finally, to ensure the validity of this process, tests were
also conducted solely using either session 1 or session 2 data. The
results from these tests were comparable to existing literature that
used machine learning approaches to distinguish AD from CN
with structural brain regional volumes and the ADNI dataset.
Discussion of these results are beyond the scope of this paper.

For the DeepSymNet pipeline, a single 10-fold cross-
validation was used due to computational constraints. Training
a cross-validation approach with random splits was not feasible.
Each fold contained a train and validation set, and once the fold
was completed, the metrics were evaluated on a separate test
set. The train, validation, and test set’s proportions were 80%
and 10%, and 10%, respectively. Learning rate and regularization
optimization tests were conducted manually. The voxel-based
approaches followed the same 10-fold cross validation and data
split schematic as the DeepSymNet. Within each fold, parameters
were tuned using the validation set, and the probabilities from the
test sets were taken into account.

The metrics from the models trained on FS 1, FS 2, and the
voxel-based methods served as the baseline metrics to compare
against the DeepSymNet architecture.We chose these Freesurfer-
based models for two reasons: (1) Freesurfer is arguably
the most used and tested image preprocessing approach to
create a representation from T1-weighted volumes. Additionally,
Freesurfer has a tested and well-recognized longitudinal pipeline
used by multiple research groups around the globe. (2) To ensure
that we were not biased to a specific FS version’s representation,
we employed two sets of features.

The metrics used to evaluate the models are the AUC ROC
score, balanced accuracy, sensitivity, and specificity. Further
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testing required the ROC curves to be compared, and these
were tested for significance using the DeLong’s test (DeLong
et al., 1988). The ROC curves’ confidence intervals were
calculated using the model’s predictions with a Monte Carlo
resampling method with 1,000 iterations, with 80% of the data
per iteration.

Computational Time Analysis
Ultimately, we are interested in developing the underlying
algorithm enabling a measuring tool for clinicians or researchers
who wants to quantify an AD-relevant progression from T1-
weighted brain images. Therefore, we tested the time needed to
go from the raw brain images to a prediction in order to assess
the feasibility of using a similar application in a clinical setting
or large clinical trials. We assumed that that all ML models were
already trained, as it is standard for ML applications deployment.
For these tests, we used a machine with 8 CPU cores and 1
GPU. We ran 450 iterations of each pipeline and computed the
mean and standard deviation of the time needed to complete. All
parallelization speed-up for the Longitudinal Freesurfer-based
pipeline were enabled.

Generalizability: Detection of “AD-like”
Progression Pattern on MCI Cohort
After the experiments, we wanted to see if the DeepSymNet
model could apply the learned progression pattern on an
external set of high-risk patients. The final DeepSymNet model
was applied to a cohort of MCI patients from the ADNI
protocol. Each of the 10-folds’ respective best DeepSymNet
model was applied to each MCI patient progression so that
each patient had 10 prediction probabilities. These probabilities
were averaged together for the final probability measurement.
These prediction probabilities were then used to construct AUC
ROC curves of MCI vs. CN. Note that the control group
probabilities were taken from the test set from the 10-fold
cross-validation process explained above for the MCI vs. CN
AUC ROC curve. In addition, these MCI results from the
DeepSymNet were compared against the same method from
the logistic regression that used atlas-based registration pipeline
outlined above.

Confounding Variable Adjustment
Finally, we adjusted the DeepSymNet’s probability output for
confounding variables through a logistic regression method.
The confounders used were the time between the two imaging
sessions, gender, and the baseline age at the first imaging session.

TABLE 2 | High-level comparison between the two feature sets from different

imaging pipelines used to test the robustness of the new method.

Freesurfer

version

Number of samples used for

ML pipeline (AD/CN)

Number of

features

Feature set 1 5.1 93 (60/39) 340

Feature set 2 6.0 93 (60/39) 117

logit E (Y) = β0+ β1
∗ X1+ β2

∗ X2+ β3
∗ X3+ β4

∗ X4 where

Y = Subject Group
(

e.g. AD, CN,MCI
)

X1 = Time between sessions

X2 = Gender

X3 = Age

X4 = DeepSymNet Probability

The feature coefficients from the logistic regression model for
these variables along with their 95% confidence interval and
p-value were reported.

RESULTS

In this study, we aimed to examine: (1) various models’
performance on learning AD-related progression patterns, (2)
image resolution and network architecture hyperparameter tests
on DeepSymNet performance, (3) the evaluation of the models
on an external set of MCI patients, and (4) the influence
of the selected confounding variables. The purpose of the
first aim was to investigate the advantages of using an end-
to-end data-driven approach to understand AD progression.
The second aim allows readers to understand how the model
behaved with hyperparameter tuning. The third aim validated
the learned AD progression-specific pattern from DeepSymNet,
and the fourth aimed ensured that these output probabilities were
statistically significant.

Longitudinal Pipeline and Model
Comparison
As seen in Table 2, the FS 1 and FS 2 pipelines had a
differing number of structural volumetric features due to the
reasons described in the Methods section. As seen in Figure 3

and Table 3 below, the DeepSymNet had the highest AUC
ROC of all the methods. Of the machine learning voxel-
based methods, the random forests approach performed the
best. There were statistical differences in the performance
between the random forest voxel-based method and the
DeepSymNet. However, there was not a significant difference
between the DeepSymNet and the model using Feature Set 2.
This suggests that a DeepSymNet architecture learns a high-
level representation of longitudinal changes that is, at least,
as informative as the changes in brain regional volumes and
outperforms the voxel-based general-purpose machine learning
approaches tested. Finally, as seen in Table 4, the preprocessing
time was much faster in the DeepSymNet and voxel-based
methods vs. the traditional neuroimaging pipelines used
in research.

DeepSymNet Hyperparameter Experiments
A non-exhaustive manual hyperparameter search for the optimal
image resolution and configuration of Inception modules was
conducted (Table 5). These tests were not completed with a grid-
search method in order to conserve time and computational
power. The resolution changes were varied between 10, 20, 25,
30, and 35 percent and were applied to the original image
isotropically. Afterwards, the number of Inception modules
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FIGURE 3 | AUC ROC curves comparing performance using a (A) data subset allowing for a comparison with samples found in Feature Set 1 (externally computed

by UCSF) and the (B) full dataset.

TABLE 3 | Longitudinal models’ metric evaluation for AUC ROC, sensitivity,

specificity, and balanced accuracy on the full dataset.

Model AUC

ROC

Sensitivity Specificity Balanced

accuracy

FS 2 (n = 482) 81.0 75.9 71.9 72.3

DeepSymNet (n = 482) 83.9 79.2 72.9 75.7

Voxel-based random

forest (n = 482)

76.7 68.4 72.6 64.2

p-values were computed from the DeLong test for correlated ROC curves to reject the

null hypothesis that there is no statistical difference between the AUCs.

N.S., not significant.

***p < 0.0001.

before and after the merge layer were varied to find the
optimal model.

Though the model with the 35% image resolution had a
higher AUC ROC, the model that used 25% image resolution
was chosen as the final model for two reasons. This model
had fewer parameters (8.6M vs. 21.2M), and there was no
statistical difference between the two curves. Several tests were
conducted where the number of Inception modules before
and after the merge layer was changed. As seen in Figure 4,
the model that performed the best in this test contained
1 and 1 Inception modules before and after the merge
layer, respectively.

DeepSymNet Output
The distribution of classification probabilities AD-like
progression estimated by the DeepSymNet architecture was
visualized in Figure 5 below. As expected, the MCI subjects’
probabilities were in between the CN and AD groups. This
indicates that the MCI group have structural progression
patterns that are similar to AD. Additionally, the MCI cohort

TABLE 4 | Time performance for voxel-based pipeline (including DeepSymNet)

and Longitudinal Freesurfer-based pipelines to generate an AD-relevant

progression metric at inference time.

Pipeline Computation time

Mean Standard deviation

DeepSymNet and other

voxel-based ML Methods

6.6min 1.2 min

Longitudinal

Freesurfer-based

17.06 h 2.7 h

TABLE 5 | Detailed view of DeepSymNet model tuning experimental AUC ROC

results.

Experiment Image resolution Module

configuration

(Before/After)

AUC ROC

Input image

resolution

[10, 20, 25, 30,

35%]

1/1 83.9

Inception module

configuration

25% [1/1, 1/2, 2/1, 2/2, 3/3] 83.9

Input image resolution and Inception module configuration were examined. The tests were

completed in a stepwise fashion as outlined in the table. Bolded values indicate the model

chosen for further analysis.

qualitatively had a smaller interquartile range compared to the
other two classes.

DeepSymNet Brain Region Relevance
Analysis
After the model evaluation was completed, we wanted to
understand which regions of the brain were relevant for
the model’s decision. The brain regions of interest are
visualized both globally and based on location (subcortical
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FIGURE 4 | AUC ROC curves for hyperparameter tuning experiments: (A) Image resolution experiments. (B) Differing Inception module architecture experiments.

“Before” and “after” labels represent the number of 3D Inception modules before and after the L-1 layer where the two timepoints are combined together.

FIGURE 5 | Boxplot visualizing the distribution of DeepSymNet’s output

probabilities for the three classes, where each dot represents the progression

probability for one subject. The class probability can be used as an indicator of

AD-like longitudinal progression over two timepoints.

vs. cortical) in Figure 6. The palladium, white matter,
and putamen subcortical regions had the highest overall
relevance magnitude across all the subjects and sessions.
Of the cortical regions, the superior temporal gyrus cortex
anterior division had the highest magnitude. The top five
activated regions from the subcortical and cortical areas are
summarized in Figure 7. All of the cortical and subcortical
regions and their relevance magnitude can be found in
the Supplementary Tables.

Models Evaluated on an External Set of
MCI Patients
Further, the final DeepSymNet model was assessed on an
external set of MCI patients that DeepSymNet was never
trained on. As seen in Figure 8, the AUC ROC score for
identifying an AD-like progression in the MCI cohort for
DeepSymNet was significantly higher than the machine learning
models trained on brain regional volumes, i.e., Freesurfer-based,
or voxels-based. Additionally, the AUC ROC performance is
comparable to the AD vs. CN progression prediction task.
This indicates DeepSymNet’s ability to generalize an AD-
progression specific pattern that is applicable to high-risk
patients and that could not be achieved by MRI-based regional
volume measures.

Confounding Variable Adjustment
Finally, the DeepSymNet’s output probabilities for the AD
vs. CN and MCI vs. CN prediction tasks were adjusted
using logistic regression with confounders. In both tasks, the
output probabilities taken from DeepSymNet were statistically
significant (p < 0.0001) and had the highest coefficients relative
to the potential confounding variables (Table 6).

DISCUSSION

In this study, our novel deep learning architecture, DeepSymNet,
learned from temporal differences on the individual level
to quantify AD progression. The DeepSymNet architecture
combines the benefit of distance-based objective functions
(which typically require smaller datasets) with prediction
error-based objective functions (which lead to higher
classification performance). The regions of the brain that
drove the model’s decision were visually analyzed using epsilon
layer-wise relevance propagation methods. In addition, the
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FIGURE 6 | ε-LRP relevance maps indicating the contribution of each voxel and brain region to the AD-progression classification at group level. (A) Voxel-based

relevance map; (B,C) normalized relevance maps mapped to brain regions; (B) sub-cortical (C) cortical. Relevance scales help denote the degree of importance for

the model’s decision.

FIGURE 7 | Brain regional relevance magnitudes of top five subcortical and cortical region, sorted in descending order. These values were computed by summation of

all the activations within the respective region and normalization by regional volume.

DeepSymNet pipeline did not use typical image preprocessing
steps, predefined brain regions, or non-rigid registration
algorithms. These commonly used steps can be a significant
source of downstream bias and computational cost. The
robustness of our pipeline was benchmarked against pipelines
that used atlas-based methods and baseline voxel-based
machine learning models. The DeepSymNet architecture
and imaging pipeline is disease-agnostic and could be used
for other problems that utilize brain imaging for measuring
disease progression.

AD is an ideal case study for this work as there is no
current established framework to numerically quantify AD
neurodegenerative progression. For clinicians to properly test
new disease-modifying drugs, there is a need to develop tools that
quantify AD degeneration with commonly used brain imaging
scans such as MRI. Many studies have found that AD-relevant
changes are visible on the T1-weighted images, and all the AD
population’s progression will at some point appear. This idea was
supplemented with longitudinal data where our model learned
from the differences between the two imaging time points.
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FIGURE 8 | AUC ROC curves for DeepSymNet, Random forests, and logistic

regression (using Feature Set 2) for the identification of an AD-like progression

in the MCI (n = 150) and CN (n = 270) groups. The models were not retrained

on the MCI group, as the MCI patients were used only at inference time.

There are several advantages to learning from time differences.
First, we effectively reduce the risk of outside confounders
affecting the experimental results as the individual patient’s
data is registered to a common space within their own specific
longitudinal data. The L-1 difference used between the same
subject will also reduce the magnitude of the cross-sectional
patient-specific features and will instead magnify the structural
differences over time. Lastly, the preprocessing method that
considers individual brain morphology is in line with providing
individualized precision medicine.

In order to compare the robustness of the novel longitudinal
pipeline, we compared models that used either pre-defined brain
region volumes or voxels as to its input against DeepSymNet.
DeepSymNet could represent AD-progression comparable to
region-based methods and better than voxel-based methods
as indicated from the superior performance over voxel-based
methods. We believe this improved performance was due to
the model learning both representations of the brain and
the differences between the two timepoints. Further, our
deep learning model was entirely data-driven and had fewer
preprocessing steps.

Two experimental hyperparameter tuning tests were
conducted to improve the model performance: image
resolution and Inception module architecture. Due to time
and computational constraints, the authors explored through
a narrow search space for tuning the model. The DeepSymNet
model chosen for further analysis used images with 25%
resolution and had one Inception module before and after the
merge layer. This model had an AUC ROC of 0.84 (0.81–0.87).

Once tuned, DeepSymNet pipeline was then applied to an
external set of MCI patients. From Figure 8, we saw an improved

AUC ROC performance MCI vs. CN progression identification
(0.84). This indicated that the model was able to generalize AD-
specific progression patterns that are also seen in prodromal MCI
patients. The DeepSymNet pipeline also achieved a performance
similar to the AD vs. CN prediction task. A non-perfect
classification was expected as the MCI cohort is a heterogeneous
group where not all subjects will develop AD. Additionally, both
classification task probabilities were statistically significant after
adjusting for confounders. Finally, as seen in Figure 5, there
was a clear trend where the MCI probabilities were between
the CN and AD probabilities, which may indicate the degree of
neurodegenerative progression.

Once the model experiments were completed, the top
activated brain regions were analyzed. Previous AD studies
corroborate our subcortical and cortical regional findings.
Researchers found significant white matter reductions in AD
patients throughout the brain, particularly in the temporal lobe
(Guo et al., 2010) and elevated mean diffusivity in precuneus
and entorhinal white matter microstructures (Kantarci et al.,
2017). The pallidum region was found to have a significant
difference in beta-amyloid burden between early and late-onset
AD (Youn et al., 2017) and differences in RNA binding protein
TDP-43 deposits (Josephs et al., 2016). Finally, researchers using
different imaging modalities to discriminate AD patients found
the pallidum and putamen to be consistently important (Rondina
et al., 2018). Various frontal regions were relevant for the model
decision; this might represent an advanced disease stage in the
selected population.

Further, we looked at evidence surrounding our cortical
region findings. An AD disease progression timeline analysis
found that the superior temporal gyrus anterior division
was among the top biomarkers to first become abnormal
(Venkatraghavan et al., 2019). Functional connectivity analysis
found decreased connectivity in the superior temporal gyrus
in dementia patients including AD (Hafkemeijer et al., 2015;
Schwab et al., 2018). The middle temporal gyrus has been shown
to atrophy significantly in both MCI and AD patients when
compared to controls in longitudinal studies (Ghazi et al., 2019)
and research that combined multi-modal data types (Convit
et al., 2000; Korolev et al., 2016). Finally, Guo et al. found
significant gray matter volume reductions in the superior and
middle temporal gyrus (2010). These subcortical and cortical
structural changes might provide insight into pathophysiology
process of AD and potentially serve as biomarkers for identifying
those who are at risk of developing AD.

There were several limitations in this study to note. As stated
in the Methods section, the first and last imaging sessions were
considered for this study. Many patients that had more than two
visits with MRI imaging, which indicates that there is much more
data available that could be incorporated into the model. Further,
the hyperparameter tuning tests were all conducted manually, in
a semi-structured way, and non-exhaustively. Machine learning
methods like grid search or random grid search are used to find
optimal network parameters. However, due to the computational
costs of these methods at training time, they were not employed.
Additionally, the time between the two imaging sessions for
each patient was not controlled during the sample selection,
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TABLE 6 | Summary of the logistic regression coefficients with associated confidence interval and p-values for DeepSymNet output probability and confounding variables

in both classification tasks.

Classification task Time between sessions Gender Baseline age DeepSymNet output probability

Progression of AD vs. CN 1.25 (0.95 to 1.54)*** 0.03 (−0.50 to 0.56) −0.07 (−0.08 to −0.05)*** 4.22 (3.01 to 5.44)***

Progression of MCI vs. CN −0.2 (−0.11 to 0.08) −0.41 (−0.89 to −0.06) −0.04 (−0.05 to −0.03)*** 6.41 (5.01 to 7.81)***

***p < 0.0001.

which could present itself as a confounder. The time between
sessions was corrected for and controlled in the statistical analysis
(Table 6). Finally, a fully external validation of these results in
other AD-specific imaging datasets was not conducted.

Future studies could expand the generalizability of AD
classification by using other open-source datasets such as Open
Access Series of Imaging Studies (https://www.oasis-brains.org/).
Also, studies could look at improving the model performance
by taking a Bayesian approach for hyperparameter tuning.
Other work could make use of our pipeline as a progression
phenotype to assess relationship with other data sources such as
cerebrospinal/blood biomarkers or genetic data. Finally, newer
models such as advances in recurrent neural networks could
also incorporate more time points which may provide a richer
representation of a patient’s progression over time.

CONCLUSION

In summary, we implemented a novel pipeline based on a
DeepSymNet architecture, that was able to detect an AD
progression pattern by learning from structural differences
of inter-subject MRI scans at two-time points. The paper’s
image preprocessing pipeline did not use predefined brain
regions or non-rigid registration, which significantly reduced the
opportunity for intermediate bias. In addition, the DeepSymNet
pipeline was benchmarked against models that used standard
imaging pipelines. From the brain region relevance analysis
using the ε-LRP algorithm, the pallidum, putamen, and the
superior temporal gyrus regions were critical in the model’s
final decision. Further, the model learned an AD progression
pattern that was generalizable on an independent, external set of
MCI patients. This architecture has the potential to be applied
to multiple other applications where longitudinal changes need
to be detected and measured. Finally, our pipeline can be used to
improve imaging-based diagnostic systems by reducing time and
computational cost.
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